skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wong, Jenna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Supported by the National Science Foundation's Improving Undergraduate STEM Education: Hispanic-Serving Institutions (IUSE-HSI) Program, a collaborative summer research internship initiative united a public four-year institution with two local community colleges to offer community college students significant engineering research opportunities and hands-on experiences. In summer 2023, four students from the community college in computer science and engineering participated in a eight-week research internship project in a research lab at the four-year university. This internship project aimed to develop and implement of real-time computer vision on energy-efficient cortex-m microprocessor. This projet explores a unique approach to engage community college students in the realm of artificial intelligence research. By focusing on the development and implementation of real-time computer vision on energy-efficient Cortex-M microprocessors, we offer a practical and educational avenue for students to delve into the burgeoning field of AI. Through a combination of theoretical understanding and practical application, students are empowered to explore AI concepts, gain proficiency in low-power computing, and contribute to real-world AI projects. Furthermore, the project offered student interns a valuable opportunity to refine their research capabilities, particularly in the realms of scientific writing and presentation, while simultaneously boosting their self-assurance and enthusiasm for pursuing STEM careers in the field of AI. 
    more » « less
  2. Abstract The formation of enduring relationships dramatically influences future behavior, promoting affiliation between familiar individuals. How such attachments are encoded to elicit and reinforce specific social behaviors in distinct ethological contexts remains unknown. Signaling via the oxytocin receptor (Oxtr) in the nucleus accumbens (NAc) facilitates social reward as well as pair bond formation between mates in socially monogamous prairie voles1–9. How Oxtr function influences activity in the NAc during pair bonding to promote affiliative behavior with partners and rejection of other potential mates has not been determined. Using longitudinalin vivofiber photometry in wild-type prairie voles and those lacking Oxtr, we demonstrate that Oxtr function sex-specifically regulates pair bonding behaviors and associated activity in the NAc. Oxtr function influences prosocial behavior in females in a state-dependent manner. Females lacking Oxtr demonstrate reduced prosocial behaviors and lower activity in the NAc during initial chemosensory investigation of novel males. Upon pair bonding, affiliative behavior with partners and neural activity in the NAc during these interactions increase, but these changes do not require Oxtr function. Conversely, males lacking Oxtr display increased prosocial investigation of novel females. Using the altered patterns of behavior and activity in the NAc of males lacking Oxtr during their first interactions with a female, we can predict their future preference for a partner or stranger days later. These results demonstrate that Oxtr function sex-specifically influences the early development of pair bonds by modulating prosociality and the neural processing of sensory cues and social interactions with novel individuals, unmasking underlying sex differences in the neural pathways regulating the formation of long-term relationships. 
    more » « less